Data Science Fundamentals
В процессе деятельности любая компания постоянно ищет новые способы развития: оптимизирует производство, улучшает бизнес-процессы, увеличивает вложения в рекламу и маркетинг, повышает уровень сервиса. Но если успехи компании сходят на нет, зачастую сложно понять, что именно идет не так и почему.
Есть область, ресурсы которой еще не исчерпаны – это Data Science. Накопленные в компании данные, полученные из разных источников, таят в себе огромный потенциал. Грамотный анализ больших объемов разнородных данных (Big Data), выведение скрытых закономерностей приводят аналитиков порой к неожиданным открытиям и выводам. Оперируя этими сведениями, можно вывести свою компанию в лидеры рынка.
Этот курс – введение в сложную и многогранную область науки по работе с большими данными – Data Science.
Вопросы, на которые вы получите ответы:
- Что представляет собой Data Science и как она связана с большими данными (Big Data)?
- Как «приложить» Data Science к вашему бизнесу и нужно ли?
- Какие данные можно использовать для анализа?
- Где именно искать и какие результаты ожидать?
- Руководители компаний и подразделений
- Линейные менеджеры
- Бизнес-аналитики
- Разработчики
- Другие сотрудники, вовлеченные в аналитическую деятельность компании
Вы поймете, как подготовить компанию и сотрудников к практическому применению больших данных (Big Data) в работе.
Вы сможете повысить эффективность принятия решений за счет грамотного сбора, структурирования и применения современных техник анализа больших данных (Big Data).
После успешного обучения вы получите удостоверение о повышении квалификации.
По окончании курса Вы будете уметь:
- определять источники сбора информации и формировать требования к ним;
- подбирать команду для работы с большими данными (Big Data) ;
- выбирать инструментарий для практической работы;
- формировать требования к гибкой адаптации компании для применения бигдата.
- понимать концепцию больших данных (Big Data) ;
- понимать основные методы обработки и анализа данных на основе матстатистики и машинного обучения.
Продолжительность курса - 16 ак. ч.
Преподаватель: Динцис Данил Юрьевич
Ведущий преподаватель Центра, руководитель направления «Инновационные технологии обучения». Доктор технических наук по специальности «Системный анализ в информационных системах».
Подробнее:
Для просмотра скрытого содержимого вы должны войти или зарегистрироваться.
Скачать:
Для просмотра скрытого содержимого вы должны войти или зарегистрироваться.